技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、R&D部門のデータ共有、利活用の実情から解説し、データ共有・利活用状況を改善するために必要な方策に関して、電子実験ノートを導入する際に必要な要件及び、各個人に必要な意識改革や会社としての体制づくり等を説明いたします。
(2024年5月14日 10:00〜11:30)
新素材を創出する探索研究では、あつかう材料の種類が豊富で、実験データや計算ツールも多種多様である。研究所全体でマテリアルズ・インフォマティクス (MI) の活用やデータ駆動型研究を目指すには、部署単位や担当者ごとに異なるデータの記録を定型データとして入力・蓄積し、また機械学習などの計算手法をツール毎ではなく共通の仕組みで使えることが重要である。
本講演では、材料研究での一般的な課題を確認し、製薬研究を例に商用パッケージソフトを活用したインフォマティクス基盤構築について説明する。
(2024年5月14日 12:15〜13:45)
研究・開発業務では、実験に用いる多種多様な資材、実験で得られる膨大なデータ、参考文献や分析報告書などの文書類といった、さまざまな情報を扱います。これらを適切に管理して活用することは、研究・開発を効率的に行ううえで極めて重要です。
本講演では、創薬研究を例にとり、多種多様な情報をクラウド型研究情報管理システムで統合的に管理して利用することのメリットを説明するとともに、実際のクラウド型研究情報管理システム製品を紹介します。
(2024年5月14日 14:00〜15:30)
マテリアルズインフォマティクスや生成AI等の普及・進化によって、研究・実験データに求められる要件、即ちその存在価値や在り方は大きく変化しています。また、生成したビッグデータの活用についても、従来のデータ管理及びデータハンドリング方法ではその価値を充分に活かすことができません。
本講演ではコニカミノルタにおけるこれらの課題解決の考え方とアプローチについて、外部動向と共にご紹介致します。
(2024年5月14日 15:45〜17:45)
IoTやAIの普及により、製造工程以降のデータ利活用は急激に進展しています。一方、公的研究機関であれ、民間企業であれ、R&D部門におけるデータの取り扱いは属人的なままであり、研究の信頼性が阻害されたり、効果的なデータの利活用がほとんど進んでいないのが実態です。R&D部門は技術の源泉であり、データを精緻に管理して効果的に利活用する、つまりデータ分析・AI化を行うことは、今後の競争力にとって不可欠です。
本講演では、まず、R&D部門のデータ共有、利活用の実情をお話しさせていただきます。 次に、データ共有、利活用状況を改善するために必要な方策について説明します。具体的には、データ共有、利活用システムに必要な要件について紹介し、システムの導入、運用時の陥りがちな落とし穴を回避するために必要なプロジェクトチームの要件等を説明させていただきます。
日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。
発行年月 | |
---|---|
2018/9/28 | コア技術を活用した新規事業テーマの発掘、進め方 |
2012/2/14 | LIMS導入に関する導入の留意点セミナー |
2011/12/14 | QCラボにおける厚生労働省「コンピュータ化システム適正管理GL」対応セミナー |
2011/7/5 | 分析機器やLIMSのバリデーションとER/ES指針 |