技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習による技術動向調査テクニックと特許実務へのAI導入・応用の勘所

機械学習による技術動向調査テクニックと特許実務へのAI導入・応用の勘所

オンライン 開催

概要

本セミナーでは、特許調査の実務について基礎から解説し、機械学習による特許調査をデモを交えて解説いたします。

開催日

  • 2023年3月28日(火) 10時30分 16時30分

修得知識

  • 機械学習による先行技術・技術動向調査の効率化
  • 特許調査におけるAI利用の現状と注意点

プログラム

 特許調査でのAI活用と主に先行技術・技術動向調査の効率化について特許調査と機械学習の観点から講演します。最近では商用のAIを利用した特許調査ツールも複数登場しています。現在は、AIへの過剰な期待の時期から冷静な判断が求められる時期に移行中です。
 最初に特許調査と検索の基礎について概観します。第3章ではAIの概要と特許調査への応用について留意点と原理的な制限事項について述べます。第4章では、商用AI特許調査ツールの活用事例を紹介します。第5〜7章では、デモを交えてオープンソースを用いた機械学習の特許調査への応用事例を単語・文書のベクトル化、文書分類、文書ベクトルの次元圧縮による特許公報の俯瞰可視化と技術動向調査への応用を紹介します。調査目的に応じたアルゴリズムと特徴量の選択が重要であり、また教師あり機械学習には良質な教師データの準備が重要です。特許調査ツールの特徴を把握して使いこなす意識が大切です。

  1. はじめに
    1. 講師自己紹介
    2. アジア特許情報研究会紹介
  2. 特許調査と検索の基礎
    1. 調査対象と調査範囲の特定・明確化
    2. マッチングと適合
    3. 特許調査における再現率 (網羅性) と適合率 (効率)
    4. 先行技術調査と侵害防止調査の検索モデルの違い
    5. 「完全一致」⇔「最良一致」検索モデルの比較
    6. 特許調査システムとその評価方法
  3. AIの概要と特許調査への応用
    1. 人工知能 (AI:Artificial Intelligence) とは
    2. AI、機械学習、深層学習について
    3. AI活用特許調査システムへの過剰な期待
    4. 特許調査への機械学習適応時の留意点
    5. 人とAIの役割分担
    6. 問題の定式化
    7. AIの使用と情報要求
    8. シンボルグランディング (記号接地) 問題
    9. ノーフリーランチ (NFL) 定理
    10. フレーム問題
    11. 過学習 (汎化性能)
    12. 特徴量選択 (醜いアヒルの子の定理)
  4. 商用AI特許調査ツールの活用事例
    1. AI特許調査ツールへの要求性能
    2. Patentfieldの活用事例
    3. PatentfieldのAIセマンティック検索
    4. PatentfieldのAI分類予測
    5. THE調査力AIのSDI調査への活用
    6. PatentSQUAREのAI検索事例
  5. オープンソースを用いた機械学習の特許調査への応用
    1. 特許調査のためのオープンソース (OSS) の基礎
    2. 特許調査における「OSSツール」と「商用ツール」の相互補完的使用
    3. 機械学習概要 (分類、回帰、クラスタリング、次元圧縮)
    4. 特許分野における自然言語処理導入のメリット
    5. 特許調査用学習済モデルの作成とその評価方法
    6. 先行技術調査の流れ (進め方)
    7. 分散表現 (単語埋め込み) とは
    8. 分布仮説に基づいた文脈中の単語の重み学習 (word2vec)
    9. doc2vecによる公報 (文書) 単位の類似度計算
    10. doc2vecによる発明の要素 (文) 単位の類似度計算
  6. 機械学習のクラス分類の応用事例
    1. ディープラーニングの基礎検討
    2. 文書のベクトル化検討
    3. one hotベクトル
      • BoW
      • TF・IDF等
    4. 分散表現ベクトル
      • word2vec
      • doc2vec
      • fastText等
    5. 機械学習による文書分類
    6. SDI調査への応用
  7. 教師無し機械学習 (クラスタリング、次元圧縮) の応用
    1. 単語・文書のクラスタリングによる動向調査への応用
    2. 文書ベクトルの次元圧縮による特許公報の俯瞰可視化
    3. 文書分類との組み合わせによるパテントマップの自動作成
  8. 特許実務へのAI利用の現状のまとめと将来展望
    1. 特許庁 (JPO) における人工知能 (AI) 技術の活用動向
    2. 特許調査分野におけるAI技術の活用動向
    • 質疑応答

付録 自分でできる特許情報解析ツール紹介

  1. キーワード抽出関係
    1. word2vec,doc2vecによる単語・文書の類似度計算と類似単語・文書抽出
    2. termextractによる専門用語 (キーワード) 自動抽出
    3. Cytoscapeによる文脈語のネットワーク分析
  2. pythonで始める機械学習
    1. python環境構築の概要
    2. doc2vecによる文書・単語の類似度計算と類似文書・単語抽出の解説

講師

  • 安藤 俊幸
    花王 株式会社 研究開発部門 研究戦略・企画部
    研究員

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 34,200円 (税別) / 37,620円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 34,200円(税別) / 37,620円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2023/10/4 特許公報を簡単に読むポイント オンライン
2023/10/5 タグチメソッドL18実験解析プログラムを作成しながら学ぶPython入門 オンライン
2023/10/5 ベイズ最適化による材料探索、実験工程の効率化 オンライン
2023/10/6 生成AIを構成する技術と業務への適用について オンライン
2023/10/10 材料研究課題を解決するためのマテリアルズ・インフォマティクス入門 オンライン
2023/10/10 人工知能の技術を活用したマテリアルズインフォマティクスの基礎と導入方法 オンライン
2023/10/12 説明可能AI (XAI:explainable AI) の作り方とAIの業務への導入方法 オンライン
2023/10/12 特許明細書の解釈と他社特許の弱点の見つけ方 オンライン
2023/10/12 スモールデータ解析のすすめ方と実問題解決への応用 オンライン
2023/10/16 AIによる知財業務の効率化と導入、運用のポイント オンライン
2023/10/17 IPランドスケープを用いた各社取り組み事例と知財体制の構築 東京都 会場・オンライン
2023/10/17 製法特許における広くて強い特許戦略の構築 オンライン
2023/10/17 レオロジーを特許・権利化するための基礎科学、応用技術、知財戦略 オンライン
2023/10/18 生成AIを用いた教師データの作成・活用と精度向上のポイント オンライン
2023/10/18 機械学習を活用したPMSM : 永久磁石同期モータ設計 オンライン
2023/10/18 共同研究/開発契約の進め方と秘密保持契約の対応ノウハウ オンライン
2023/10/18 新規モダリティの事業価値評価およびGO/No-go意思決定のポイント オンライン
2023/10/19 ベイズ統計から学ぶ統計的機械学習 オンライン
2023/10/20 スモールデータ解析のすすめ方と実問題解決への応用 オンライン
2023/10/20 記載要件に基づいて特許を読み込めますか? 書けますか? オンライン

関連する出版物

発行年月
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/7/29 費用対効果に基づく外国特許出願国の選び方・進め方
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2021/3/31 経営・事業戦略に貢献する知財価値評価と効果的な活用法
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/10/8 P&G 技術開発実態分析調査報告書
2018/10/8 P&G 技術開発実態分析調査報告書 (CD-ROM版)
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2014/7/30 キヤノン〔2014年版〕 技術開発実態分析調査報告書
2014/7/30 キヤノン〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版)