技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

強化学習の基礎とPythonによるアルゴリズム実装

オンデマンドセミナー

強化学習の基礎とPythonによるアルゴリズム実装

~例題やPythonを用いたプログラミング演習を通して、強化学習がうまく働く仕組みや応用例を学ぶ~
オンライン 開催 PC実習付き

このセミナーは、講師と直接Q&Aもできる、セミナーの映像収録です。​
お申込み日から14日間ご視聴いただけます。テキストはマイページからダウンロードできます。
このセミナーに関する質問に限り、講師と直接メールにてQ&Aをすることができます。
2020年11月27日までお申込み受付いたします。

  • 収録日:2020年5月21日 10:30~16:30
  • 視聴時間: 約3時間59分

概要

本セミナーでは、簡単な例題やプログラム演習を通して、強化学習がうまく働く仕組みや応用例を解説するとともに、脳の情報処理との相同性や相違性を紹介いたします。

開催日

  • 2020年11月27日(金) 10時30分 16時30分

修得知識

  • 強化学習を用いた研究開発に必要な基礎知識
  • Python (Jupyter Notebook) を用いた強化学習アルゴリズムの実装方法
  • 強化学習モデルを利用したヒトや動物の行動解析法

プログラム

 強化学習とは環境とのインタラクションを通して試行錯誤的に最適な戦略や行動選択則を獲得する機械学習法の枠組みです。囲碁や将棋の世界では、人工知能が人間エキスパートを超えるようになり世の中を驚かせましたが、それには強化学習が大きな貢献を果たしました。では、強化学習を使えば何でもできるのでしょうか?それとも、強化学習にも苦手な応用分野はあるのでしょうか?それを知るには強化学習の基本原理を理解する必要があります。
 本講演では、簡単な例題やPythonを用いたプログラミング演習を通して、強化学習がうまく働く仕組みや応用例を解説するとともに、脳の情報処理との相同性や相違性をご紹介したいと思います。

  1. はじめに
    1. 例題から学ぶ機械学習と強化学習の位置づけ
    2. 強化学習の歴史
  2. 強化学習の基礎理論
    1. マルコフ決定過程による問題の定式化とその解法
      1. マルコフ決定過程
      2. 価値反復法
      3. 方策反復法
    2. 代表的な強化学習アルゴリズム
      1. モンテカルロ法
      2. TD学習法
      3. Q学習法
      4. SARSA法
      5. モデル同定型強化学習法
    3. アルゴリズム実装時に生じる諸問題とその解決法
      1. 探索と知識利用のジレンマ
      2. メタ学習
      3. 連続空間・高次元空間への対応とDQN
  3. プログラミング演習:Pythonによる強化学習アルゴリズムの実装
    (※各項目の合間に演習も織り交ぜます)
  4. 強化学習の応用例
    1. ロボットの自動制御
    2. 脳の意思決定モデルと行動解析

講師

  • 吉本 潤一郎
    奈良先端科学技術大学院大学 先端科学技術研究科 情報科学領域
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 30,400円 (税別) / 33,440円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 30,400円(税別) / 33,440円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

オンデマンドセミナーの留意点

  • 申込み後、すぐに視聴可能なため、本セミナーのキャンセルは承りかねます。 予めご了承ください。
  • 録画セミナーの動画をお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • お申し込み前に、 視聴環境 をご確認いただき、 視聴テスト にて動作確認をお願いいたします。
  • 3営業日後までに、メールをお送りいたします。
  • 視聴期間は申込日より14日間です。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • このセミナーに関する質問に限り、後日に講師とZoomなどを活用して個別Q&Aをすることができます (15分程度) 。
  • 具体的には、セミナー資料に講師のメールアドレスを掲載していますので、
    セミナーに関する質問がございましたら先ずは講師に直接メールでアポイントメント後、
    ZoomなどTV会議システムでQ&Aをしてください。
  • 継続的なメールでのQ&Aではなく、短時間ミーティングによるQ&Aを講師が希望しています。
  • 動画視聴・インターネット環境をご確認ください
    • セキュリティの設定や、動作環境によってはご視聴いただけない場合がございます。
    • サンプル動画が閲覧できるかを事前にご確認いただいたうえで、お申し込みください。
  • 本セミナーの録音・撮影、複製は固くお断りいたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/27 感性工学商品開発プロセスへのAI応用 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/4 ベイズ推定を用いたデータ解析 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン
2025/2/10 着実にステップアップできる多変量解析講座 オンライン
2025/2/12 実験短縮、研究開発効率化へのMI、生成AI、ロボット導入と活用のポイント オンライン
2025/2/12 マテリアルズ・インフォマティクスの基礎と実践 オンライン