技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習を用いた異常判別

機械学習を用いた異常判別

東京都 開催 会場 開催

概要

本セミナーでは、機械学習を用いて異常状態を検出するための、種々の判別分析手法や異常検知手法を解説いたします。

開催日

  • 2019年10月18日(金) 10時30分16時30分

受講対象者

  • 異常値を含むデータからの検出方法にお困りの方
  • データサイエンスに関心がある方

修得知識

  • 各種分析手法の特徴、目的、長所・短所
  • 分析ソフトウェアに実装された分析手法の使い分け

プログラム

 近年、多くの産業・ビジネスの場面において、特定の対象や集団を認識することや異常状態を検出することが重要になっています。例えば工業製品の良品・不良品の判定は人力では作業量に限界が生じるためコンピュータによる自動化が求められています。このような問題に対し有効とされる機械学習手法が、種々の判別分析手法や異常検知手法です。
 そこで本セミナーでは代表的な判別分析手法である線形判別分析や非線形な判別ルールに対応できる2次判別分析、さらには複雑なデータの判別を可能にするサポートベクターマシンについて講義します。また、異常検知手法についてはデータの特性 (正規分布、周波数特性、相関) と閾値による異常判別からはじまり、マハラノビスの距離、LOF、one – class SVM、change finderといった分析手法について、その長短所や選択方法も含めて解説します。

  1. 判別と異常検知
    1. 教師あり学習、教師なし学習とは?
    2. 手法の複雑さと過学習
    3. 複雑さの選定
      1. 交差検証法
      2. 多重共線性
    4. 判別機の性能評価
      1. 正常/異常標本精度
      2. ROC曲線
  2. 異常判別:教師あり学習
    1. 線形判別
    2. 2次判別
    3. Support Vector Machine (SVM)
      1. ハードマージンとソフトマージン
      2. カーネルトリック
  3. 異常検知:教師なし学習
    1. 正規分布を用いた異常検知:単変量の場合
    2. 正規分布を用いた異常検知:多変量の場合
      1. マハラノビスの距離
      2. ホテリングのT2法
    3. Local Outlier Factor
    4. One Class SVM
    5. 時系列モデルにおける異常検知
      1. 変化点検知
      2. Change Finder
  4. まとめ

講師

  • 笛田 薫
    滋賀大学 データサイエンス学部
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/7/8 少ないデータによるAI・機械学習の進め方、活用の仕方 オンライン
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/17 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/7/22 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/23 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/23 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/24 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/24 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/25 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/28 外観検査のデジタル化・自動化 オンライン
2025/7/30 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/30 ケモインフォマティクスと機械学習による化学データ解析 オンライン
2025/7/31 センサから取得した時系列データの処理・解析技術と機械学習の適用 オンライン
2025/7/31 スモールデータ解析の方法と実問題解決への応用 オンライン
2025/7/31 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/31 ケモインフォマティクスと機械学習による化学データ解析 オンライン
2025/8/1 スモールデータ解析の方法と実問題解決への応用 オンライン
2025/8/4 マテリアルズ・インフォマティクスへのデータ分析とその進め方 オンライン

関連する出版物