技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、実験計画に機械学習技術を導入するための必要知識を事例とともに解説いたします。
ビッグデータ時代においては大量のデータから有用な知識を抽出するための機械学習アルゴリズムが重要な役割を果たします。機械学習アルゴリズムの多くは、既にデータが与えられている状況を想定しているものが多く、受動学習と呼ばれています。一方、どのようにデータを取得すれば有用な知識を得ることができるかを考えるアプローチは能動学習 (Active Learning) と呼ばれています。能動学習はデータの取得プロセスの最適化を目的としているため、実験計画法 (Design of Experiment) の一種とみなすことができます。
例えば、未知のシステムにおいて応答が最大となる実験条件をみつけたい場合、応答が高いと予測される条件で実験を行うだけでなく、応答が未知で不確実性の高い条件で実験を行うことも必要となります。前者は最適化を目的とする「搾取 (exploitation) 」と呼ばれ、後者はシステムの推定を目的とする「探索 (exploration) 」と呼ばれます。能動学習では、確率モデルによって未知のシステムをモデル化しつつ、搾取と探索のバランスを適切に制御する枠組を提供します。
本講演では、まず、実験計画法の観点から実験パラメータ空間の境界探索のための能動学習を説明します。続いて、未知のシステムの最大化問題を効率的に解くためのベイズ最適化 (Bayesian Optimization) と呼ばれる方法を、実例を交えて紹介します。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/3/23 | 実測データとデータ解析を統合した化学プロセス設計・最適化 | オンライン | |
| 2026/3/23 | 実験の実務 : 効率的、確実に目的を達成できる実験内容の考え方 | オンライン | |
| 2026/3/31 | Pythonで学ぶデータ解析・機械学習を理解するための線形代数入門 | オンライン | |
| 2026/4/17 | 因子ごとの最適条件を少ない実験回数で見つける統計的手法「実験計画法」 & 汎用的インフォマティクス「非線形実験計画法」 | オンライン | |
| 2026/4/21 | 図解と演習で学ぶ実験計画法入門 | オンライン | |
| 2026/5/14 | 図解と演習で学ぶ実験計画法入門 | オンライン |
| 発行年月 | |
|---|---|
| 2025/3/31 | ベイズ最適化の活用事例 |
| 2024/10/31 | 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発 |
| 2023/12/27 | 実験の自動化・自律化によるR&Dの効率化と運用方法 |
| 2023/6/30 | 生産プロセスにおけるIoT、ローカル5Gの活用 |
| 2022/12/31 | 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集 |
| 2021/10/25 | AIプロセッサー (CD-ROM版) |
| 2021/10/25 | AIプロセッサー |
| 2021/7/30 | マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例 |
| 2021/6/30 | 人工知能を用いた五感・認知機能の可視化とメカニズム解明 |
| 2021/6/28 | AI・MI・計算科学を活用した蓄電池研究開発動向 |
| 2020/8/11 | 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート |
| 2020/7/31 | 生体情報センシングと人の状態推定への応用 |
| 2020/4/30 | 生体情報計測による感情の可視化技術 |
| 2019/1/31 | センサフュージョン技術の開発と応用事例 |
| 2018/5/31 | “人工知能”の導入による生産性、効率性の向上、新製品開発への活用 |
| 2013/6/21 | 機械学習によるパターン識別と画像認識への応用 |
| 1993/3/1 | 新しいサーボ制御の基礎と実用化技術 |