技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
機械学習とは、学習データから学んだ知識に基づいて「予測」を行う機能のことである。予測する対象が「クラス」の場合を「パターン認識」、「値」の場合を「回帰」などと呼んでいるが、多くの機械学習アルゴリズムはどちらの場合にも適用可能である。本講義では「パターン認識」について解説する。
「パターン認識」は「特徴抽出」と「識別規則」と「学習規則」からなる。本講義では、パターン認識の分野で広く利用されている代表的な識別規則と学習規則について紹介する。特徴抽出は極めて重要であるが、認識対象ごとに考える必要があるので、本講義では応用事例の中で一例を紹介するにとどめる。
学習データを用いて設計されたパターン認識装置は、実際に世の中で使用される場合にどの程度の性能 (汎化能力という) を発揮できるか適切に予測する必要がある。それらの手法についても紹介する。また、ROC曲線を用いた識別器間の性能比較法についても紹介する。
紹介した識別規則や学習規則ついて、統計解析環境Rを用いた実行例を示し、それらの特性について理解を深めることができるようにする。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/2/2 | AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック | オンライン | |
| 2026/2/4 | AI外観検査の導入プロセスと実践ノウハウ | オンライン | |
| 2026/2/5 | AI外観検査の導入プロセスと実践ノウハウ | オンライン | |
| 2026/2/6 | データ分析およびAIエージェントの基礎と活用に向けたポイント | オンライン | |
| 2026/2/9 | 実験計画法のためのデータ解析・ベイズ最適化の基礎と材料・プロセス・装置設計への適用・最新事例 | オンライン |
| 発行年月 | |
|---|---|
| 1993/3/1 | 新しいサーボ制御の基礎と実用化技術 |