技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
プラスチックスは、1950年代以降、石油の大量生産に伴って、様々な構造のものの開発と量産化が進み、優れた利便性と低コスト化から急速に生産量が増大した。現在までに、日用品などの汎用製品から、電子機器、自動車などの耐久製品まで、多種の製品に幅広く利用されており、今や我々の生活に必須な素材となっている。一方、量産化されてから、まだ70年程度と歴史が浅く、その負の側面として使用後の処理と廃棄物の問題が顕在化している。すなわち、安価であるため、使い捨ての汎用製品に大量に使用されているが、そのリサイクルは進んでおらず、これは耐久製品用途でも同様であり、世界全体でリサイクル率は10%にも及んでいない。一方、埋め立てや投棄など、土壌や海洋などの環境中に廃棄されたものは、その優れた耐久性がかえって災いとなり、長期間、分解せずにそのまま留まってしまうため、今や、地球上の最大規模の環境汚染物質となっている。
このプラスチックスによる環境問題は1980年代から活発に議論されるようになり、リサイクルの推進とともに、廃棄後、環境中で分解できる生分解プラスチックの開発が進み、一部実用化された。さらに、1990年代から、石油資源の枯渇や温暖化などの地球規模の環境問題が顕在化し、このため、これらの対策に寄与できる植物を原料としたバイオマスプラスチックスへの関心が高まり、この開発と実用化が進められた。そして、生分解プラスチックとバイオマスプラスチック (現在、両方を合わせて、バイオプラスチックとされる) の開発と利用は徐々に拡大したが、しかし、現在のこれらの合計生産量は、石油原料系のプラスチックのわずか0.5%程度であり、プラスチックの環境対策への寄与はまだ低い。このまま、プラスチックによる環境汚染が進行すれば、紙、木材などの他の素材への代替えが進み、いずれは、プラスチックが不要なものとなりかねない。
著者は、プラスチックの環境対策に長年、関わっており、特に、バイオマスプラスチックの研究開発には日本電気 株式会社 と筑波大学において、23年以上、携わってきた。一般企業においての材料開発は、研究投資に対する見返りから、通常、数年での実用化を目指すため、バイオマスプラスチックにおいても、本来の高度な環境調和性をある程度犠牲にしても、実用特性の達成を目指す傾向がある。このため、製品化できても、環境対策への寄与度が不十分なものが多い。これに対して、著者は、高度な環境調和性とともに、優れた実用特性や新たな付加価値となる新機能を同時に達成するという、従来の企業では困難とされた目標にあえて挑戦した。その結果、デンプン原料系や非食用の植物原料系で、高い植物成分率と高機能性を両立するバイオマスプラスチックを開発し、電子機器などの製品に実用化した。
本書では、このような実際の研究開発と実用化の経験に基づいて、バイオプラスチックの基礎から応用について解説する。すなわち、第1章では、バイオプラスチックを含むプラスチック全体の概説、構造と物性の関係、歴史、環境問題の対策と規制の動向について解説する。第2章では、利用できるバイオマスの種類、生分解性と海洋分解性、主要なバイオプラスチックの特徴、生産動向、そして日本や世界の利用動向とその傾向の違いについて説明する。さらに、著者らが実施した実際の研究開発・製品化の事例として、第3章で全体の概説と開発戦略、以降はその具体例として、第4章でポリ乳酸複合材、第5章で非食用植物原料のセルロース樹脂複合材、第6章で藻類バイオマスプラスチックについて解説する。最後に第6章で全体のまとめと今後のバイオプラスチックの展望について述べる。
本書は、バイオプラスチックやそれを利用する様々な製品に関係する研究開発、製品企画、技術営業に関わる若手からベテランまでの人材を対象としており、バイオプラスチックの知見をわかりやすく、かつ詳細に、さらに、研究結果に対するメカニズムも十分に説明することで、バイオプラスチックの本質への理解が深まることを重視している。本書が読者の今後のバイオプラスチックに関わる活動に役に立つことを心から願っている。
位地 正年
シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。
開始日時 | 会場 | 開催方法 | |
---|---|---|---|
2023/12/27 | 高分子の劣化反応メカニズムと分析法・劣化解析事例 | オンライン | |
2024/1/5 | ゴム材料の摩擦摩耗現象の理解と制御 | オンライン | |
2024/1/5 | プラスチック部材における環境応力割れ現象の解明と対策 | オンライン | |
2024/1/9 | シリコーンの基礎・特性と設計・使用法の考え方・活かし方 | オンライン | |
2024/1/10 | 高屈折率材料の基礎と開発における分子設計・制御のポイント | オンライン | |
2024/1/10 | 高分子材料の構造・物性とラマン・赤外分光法による評価 | オンライン | |
2024/1/12 | エポキシ樹脂の分子構造・硬化性および耐熱性とその他の機能性付与技術 | オンライン | |
2024/1/12 | フィルムの延伸・分子配向の基礎、過程現象の解明と構造形成、物性発現、評価方法 | オンライン | |
2024/1/15 | 脱炭素と循環型経済社会における廃プラスチックリサイクルの新しい可能性 | オンライン | |
2024/1/16 | 濃厚/非水/多成分系における微粒子・ナノ粒子の分散安定化技術、分散剤・チキソ剤の選択、分散安定性試験法 | オンライン | |
2024/1/18 | ポリウレタンの開発と応用 | オンライン | |
2024/1/18 | 高分子の結晶化メカニズムと解析ノウハウ | オンライン | |
2024/1/18 | 化学反応型樹脂の硬化率・硬化挙動の測定・評価法 | オンライン | |
2024/1/19 | 押出機内の樹脂挙動および溶融混練の基礎と最適化 | 東京都 | 会場 |
2024/1/19 | ゲル化剤・増粘剤の基礎・特性・評価法 | オンライン | |
2024/1/19 | 分子シミュレーションによる高分子材料の内部構造と破壊メカニズムの解析 | オンライン | |
2024/1/22 | EUVメタルレジストの作製、反応機構と評価 | オンライン | |
2024/1/22 | 熱可塑性エラストマー (TPE) の基礎と生分解性TPEの開発 | オンライン | |
2024/1/22 | リサイクル炭素繊維 わが国でビジネスは可能か? | オンライン | |
2024/1/24 | 濃厚/非水/多成分系における微粒子・ナノ粒子の分散安定化技術、分散剤・チキソ剤の選択、分散安定性試験法 | オンライン |
発行年月 | |
---|---|
2023/7/31 | 熱可塑性エラストマーの特性と選定技術 |
2023/1/31 | 液晶ポリマー (LCP) の物性と成形技術および高性能化 |
2022/12/31 | 容器包装材料の環境対応とリサイクル技術 |
2022/10/5 | 世界のプラスチックリサイクル 最新業界レポート |
2022/8/31 | ポリイミドの高機能設計と応用技術 |
2022/5/31 | 樹脂/フィラー複合材料の界面制御と評価 |
2022/5/31 | 自動車マルチマテリアルに向けた樹脂複合材料の開発 |
2022/5/30 | 世界のバイオプラスチック・微生物ポリマー 最新業界レポート |
2022/3/30 | 環境配慮型プラスチック (製本版 + ebook版) |
2022/3/30 | 環境配慮型プラスチック |
2021/12/24 | 動的粘弾性測定とそのデータ解釈事例 |
2021/7/30 | 水と機能性ポリマーに関する材料設計、最新応用 |
2021/7/28 | プラスチックリサイクル |
2021/6/29 | UV硬化樹脂の開発動向と応用展開 |
2021/5/31 | 重合開始剤、硬化剤、架橋剤の選び方、使い方とその事例 |
2021/5/31 | 高分子材料の劣化・変色対策 |
2021/4/30 | 建築・住宅用高分子材料の要求特性とその開発、性能評価 |
2021/1/29 | 高分子材料の絶縁破壊・劣化メカニズムとその対策 |
2020/11/30 | 高分子の成分・添加剤分析 |
2020/11/30 | 高分子の延伸による分子配向・結晶化メカニズムと評価方法 |