技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

深層学習の基本的な原理を理解する

深層学習の基本的な原理を理解する

~最急降下法 / 誤差逆伝播法 / CNN / GAN~
オンライン 開催

開催日

  • 2021年10月8日(金) 10時00分17時00分

修得知識

  • 現在の深層学習の全体像
  • 深層学習の基本的な原理の理解
  • 深層学習での代表的な学習アルゴリズム
  • 先端的研究の概要の理解への橋渡し
  • 次々に発表される先端研究のおおまかな把握が楽になる
  • 効果的でユニークなアプリケーション開発

プログラム

 深層学習を実際に使ってみたご経験のある方は増えていると思います。プログラムは指示通りに動いてくれますが、一方で何かが不足していると感じませんか?それは、根本的な原理の理解です。深層学習の基本原理が理解できると、一段高い場所から深層学習が見えてくるようになります。
 本講座では、深層学習で広く用いられている代表的な学習アルゴリズムについてわかりやすく解説します。

  1. 深層学習のいろいろ
    1. 深層学習の3つの流れ
    2. 代表的な深層学習
      1. 階層型ニューラルネットワーク
      2. リカレントニューラルネットワーク
      3. 畳み込みニューラルネットワーク
      4. 深層ボルツマンマシン
  2. 最急降下法~ニューラルネットワークの基本原理~を理解しよう
    1. ニューラルネットワークを最も単純化しよう~簡単なディジタルフィルタとして~
    2. 誤差を小さくするためには
    3. 微分の復習
    4. 学習アルゴリズムの導出
  3. ニューラルネットワークに適用しよう~誤差逆伝播法 (バックプロパゲーション) ~
    1. 出力層に近い層は簡単
    2. 1層奥に入るにはアイデアが必要だった~誤差を逆に伝搬させる~
    3. 非線形性が効果的である理由を理解しよう
    4. 実際の応用例
  4. 畳み込みニューラルネットワーク
    1. 単純型細胞と複雑型細胞
    2. 畳み込み
    3. プーリング
    4. 実際の応用例
  5. 敵対的生成ネットワーク (GAN)
    1. 簡単な動作原理
    2. 実際の応用例
  6. 深層学習の課題と今後の発展
    1. 現在の深層学習の課題
    2. 今後の発展の方向性
  7. まとめ

講師

  • 萩原 将文
    慶應義塾大学 理工学部 情報工学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/6/12 小規模データに対する機械学習の効果的適用法 オンライン
2025/6/13 小規模データに対する機械学習の効果的適用法 オンライン
2025/6/18 機械学習のための少数データ、データ不足への対応と解釈・評価方法 オンライン
2025/6/18 浸透学習法 (PLM:Percolative Learning Method) の原理と応用 オンライン
2025/6/23 バイオ医薬品開発のためのタンパク質デザインと凝集・安定性への対応 オンライン
2025/6/25 機械学習を用いた画像認識技術の基礎とその応用 オンライン
2025/6/25 機械学習のための少数データ、データ不足への対応と解釈・評価方法 オンライン
2025/6/26 最適解を効率的に導く統計的組合せ最適化:実験計画法とExcelでできる人工知能を併用する汎用的インフォマティクス:非線形実験計画法 オンライン
2025/7/8 少ないデータによるAI・機械学習の進め方、活用の仕方 オンライン
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/28 外観検査のデジタル化・自動化 オンライン
2025/7/29 人工知能応用技術ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・エンジニアリング応用入門 オンライン
2025/8/19 ChatGPTを使ったPythonプログラミングの実践講座 オンライン
2025/8/22 外観検査・異常検知の自動化の進め方 オンライン
2025/8/28 ChatGPTを使ったPythonプログラミングの実践講座 オンライン
2025/9/17 ディジタル信号処理による雑音・ノイズの低減/除去技術とその応用 オンライン
2025/9/28 Vision Transformerの仕組みとBEV Perception オンライン
2025/12/19 未知の異常も検知する製造業向け人工知能技術MTシステムの基礎および適用事例 オンライン