技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

ディープラーニング入門講座 : ディープラーニングの考え方と重要な基礎技術紹介

ディープラーニング入門講座 : ディープラーニングの考え方と重要な基礎技術紹介

~基礎から実践に至るまで、幅広い知識習得をカバーする~
東京都 開催 会場 開催

開催日

  • 2020年5月18日(月) 11時00分17時00分

プログラム

 ディープラーニング (深層学習) は複数の層が積まれた、多層構造のネットワークを用いて巧みに機械学習するための技術であり、現在の人工知能技術の根幹となっています。本講座は、基礎的な背景を含めて、ディープラーニングと触れ合うための概要知識と基礎的な設計技術の習得を主眼としています。基礎から実践に至るまで、幅広い知識習得をカバーします。
 前半は主にディープラーニングの数理的背景や意味についての解説となります。何故、ディープラーニングが出てきたのか、そして、何故ディープラーニングが凄いのか。など、ディープラーニングの基本的な“何故”や疑問に出来るだけ答えていくことが目標です。
 後半は主にディープラーニングの技術的な側面に注目します。ディープラーニングの利用には様々な種類のアルゴリズムが必要となり、それらたくさんのアルゴリズムの把握は初学者にとって非常に大変な作業となります。後半では、それぞれのアルゴリズムが“何故”必要なのか、そして、“何故”そんなにたくさんの種類のアルゴリズムが存在しているのかなどの疑問に、代表的なアルゴリズムを紹介しながら答えていきます。内容の性質上、 (特に後半は) 数式が少なからず出現しますが、必要に応じて補足をしていくので特殊な専門知識は必要ありません。

  1. 機械学習とは何か?
    1. 機械学習が目指すもの
    2. 機械はデータから知識を獲得する
    3. 機械学習の種類
      1. 教師あり学習
      2. 教師なし学習
      3. 教師なし学習と人工知能
    4. 深層学習 (ディープラーニング) モデルの鳥瞰
  2. 深層学習への道のり
    1. ニューラルネットワークの基礎
      1. 単純パーセプトロン~機械学習の事始め~
      2. フィードフォワードニューラルネットワーク
      3. パターン認識問題
      4. 誤差逆伝播法 (バックプロパゲーション)
      5. ニューラルネットワークの技術的問題点
    2. 深層学習へ
      1. 事前学習という考え方
      2. 自己符号化器と積層自己符号化器
      3. 深層学習の真相
      4. その他の深層学習モデル~CNNとは~
      5. 表現学習とは何か
      6. 深層学習は一言でいうと○○をしている
  3. 深層学習の基本技術 (必須な基本技術)
    1. 基本的な技術Ⅰ (勾配降下法について)
      1. 確率的勾配降下法 (SGD)
      2. 勾配法の様々なアルゴリズム
        1. Adam法
        2. AdaMax法
        3. AMSGrad法
    2. 基本的な技術Ⅱ (パラメータの初期化について)
      1. 入力データの初期化
      2. 学習パラメータの初期化
        1. Xavier法
        2. He法
  4. より進んだ実践技術 (運用の際の考え方と注意点)
    1. 過学習
      1. 過学習とは
      2. 学習するときはコレに注目せよ~学習誤差の指標~
      3. 過学習の問題と見抜き方~過適合は最悪のアプリを導く~
    2. 正則化法
      1. 正則化技術で過学習を緩和させる
      2. 様々な正則化アルゴリズム
        1. 重み減衰
        2. ドロップアウト
        3. バッチ正則化
    3. その他の最新技術
    4. 口伝の実践技術
      1. 層の設計について
      2. 学習がうまくいかないときの対処
      3. 設計の際の重要な考え方
  5. 本講座のまとめと付録集

講師

  • 安田 宗樹
    山形大学 大学院 理工学研究科 情報・エレクトロニクス専攻
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 59,000円 (税別) / 64,900円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/3 ROS/ROS2環境での三次元点群処理 オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン

関連する出版物