技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

ディープラーニングとパターン認識、最先端の人工知能へ

ディープラーニングとパターン認識、最先端の人工知能へ

~ディープラーニングの基礎と実践~
東京都 開催 会場 開催

概要

本セミナーは、ディープラーニングと触れ合うための必須の知識習得を目標としています。

開催日

  • 2017年3月13日(月) 11時00分16時00分

プログラム

 ディープラーニングは複数の層が積まれた、多層構造のネットワークを用いて、巧みに機械学習するための技術です。
 本セミナーは、基礎的な背景を含めて、ディープラーニングと触れ合うための最低限の知識習得を第一の目標としています。何故、ディープラーニングが出てきたのか、そして、何故ディープラーニングが凄いのか。それらの“何故”に出来るだけ答えていくことが本講演の最終的な目標です。
 ディープラーニングや人工知能に興味があるけれども、その正体がよく分からなくて困っている方々や、多少聞きかじっているけれど、そこを超えてもっと奥の真実を知りたい方々を主な対象としています。

  1. 機械学習とは何か?
    1. 機械学習が目指すもの
    2. 機械はデータから知識を獲得する
    3. 機械学習の種類
      1. 教師あり学習
      2. 教師なし学習
      3. 教師なし学習と人工知能
  2. ディープラーニングへの道
    1. ニューラルネットワークの基礎
      1. 単純パーセプトロン ~機械学習の事始め~
      2. フィードフォワードニューラルネットワーク
      3. 誤差逆伝播法
      4. ニューラルネットワークの第一技術限界
    2. ディープラーニングに用いられるニューラルネットワークのしくみ
      1. 事前学習という考え方
      2. 自己符号化器は情報を圧縮する
      3. 積層自己符号化器がディープラーニングの雛形
      4. 表現学習という言葉 ~特徴量の抽出と学習~
      5. 一言で言うと、ディープラーニングは○○をしている!
      6. 畳み込みニューラルネットワーク (CNN) のしくみ
      7. 何故CNNが凄いのか? ~CNNの使いどころ~
  3. 本講演の締めくくり ~ディープラーニングのちょっとしたデモを添えて~
    1. 画像データセットをディープラーニングしてみた
      1. 自動獲得されるフィルタ
      2. 学習された表現が組み込まれている場所
    2. さらに深めるための技術
      1. 層を積むほど性能は上がるのか?
      2. 正則化技術 ~過適合は最悪のアプリを導く~
      3. ディープラーニングの最新技術
    3. 本講演のまとめ

講師

  • 安田 宗樹
    山形大学 大学院 理工学研究科 情報・エレクトロニクス専攻
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 57,000円(税別) / 61,560円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/3 ROS/ROS2環境での三次元点群処理 オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン

関連する出版物