技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonによる機械学習入門

Pythonによる機械学習入門

~SVMからDeep Learningまでを使えるように~
東京都 開催 会場 開催

開催日

  • 2016年12月20日(火) 11時00分 16時00分

プログラム

 本セミナーでは、Pythonによるパターン認識・機械学習の導入から基礎について解説します。
 近年、SVM、AdaBoost、Random Forestなどのこれまで広く利用されてきた機械学習ツールだけでなく、Deep Learningも様々なところで利用されています。
 Python及びその様々なライブラリを利用することで、機械学習に基づく様々なクラス分類器が簡単に利用できることを知り、それらを使いこなせるようになることを目的としています。

  1. はじめに
    1. パターン認識・機械学習とは
    2. パターン認識の例
    3. パターン認識における機械学習の枠組み
  2. Pythonの概要
    1. Pythonとは
    2. Pythonの利用環境
    3. Pythonの文法
    4. 基礎となるPythonライブラリ
  3. Pythonでの機械学習
    1. scikit-learnを用いた機械学習の枠組み
    2. 特徴量の読み込み
    3. 各種クラス分類手法の切り替え
    4. 各種クラス分類手法の比較
  4. Deep Learningの利用
    1. クラス分類器としてのDeep Learning
    2. 特徴抽出を含めたDeep Learning
  5. まとめ・質疑応答

講師

  • 川西 康友
    名古屋大学 大学院 情報科学研究科
    助教

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/27 感性工学商品開発プロセスへのAI応用 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/4 ベイズ推定を用いたデータ解析 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン