技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
このセミナーは2024年10月に開催したセミナーのオンラインセミナー:オンデマンド配信です。
オンラインセミナーは、お申し込み日より10営業日間、動画をご視聴いただけます。
お申込は、2025年4月28日まで受け付けいたします。
(収録日:2024年10月30日 ※映像時間:約4時間44分)
本セミナーでは「知財戦略や戦略的特許出願、さらには特許情報の読み解き方」を踏まえ「実用化をめざしたメタマテリアル/メタサーフェス」に関する取り組みの俯瞰を試みます。
メタマテリアルは電磁波の分野で、V. G. Veselagoが1967年に負の屈折率をもつ物質を予言したことに始まります。D. R. SmithとL. B. Pendryが、2002年にGHzの周波数域で負の屈折率をもつ3次元の実物を製作したことで、メタマテリアルの研究がスタートしました。メタサーフェスは、光の波長よりも十分小さな構造体を 2次元的に配列したもので、 2011年にHarvard大 Capassoらが初めて実証に成功した、比較的新しい技術です。そのため、3次元のものをメタマテリアル、2次元のものをメタサーフェスと称するだけでなく、メタマテリアルがメタサーフェスを包括する上位概念として扱われることもあります。
メタサーフェスで、光の伝搬方向を制御できることが示されことで、レンズ (メタレンズ) などの光学素子が実現されただけでなく、MEMS (Micro Electro Mechanical Systems) やCMOS (Complementary Metal Oxide Semiconductor) イメージセンサーを製造しているファンドリーであれば、製造可能とされています。そして、メタレンズのユニバーサルな構造設計に対しては、光学解析ツールの提供をビジネス化する動きもあります。電磁波 (光波と電波) は波動現象であり、波動の伝搬速度、周波数や波長が関係します。波長以下のサイズをもつ微細構造を多数並べることで、波長よりも大きな物体を製作すると、観測される波動現象には、微細構造から決まる空間平均的な物性が自然界にない特性をもつようにできます (例えば、負の屈折率) 。電磁波は縦波と横波をもつベクトル波であり、音波は縦波のみをもつスカラー波ですが、いずれも波動現象であるため,電磁波で考案されたメタマテリアル/メタサーフェスに関する取り組みのいくつかは音波でも可能になります。
電磁波では、5G/6G周波数帯域 (ミリ波・テラヘルツ波) において、メタサーフェスを用いた反射板/駆動型反射板や屈折板が実現されています。光学メタサーフェスを用いることで、垂直に入射された光を偏波成分毎に分離して検出できることが実証され、将来のデータセンターやBeyond 5Gにおいて求められる、光インターコネクション (高密度テラビット級光配線や光送受信器) の安価な実現への道筋が示されています。さらには、医療機器向けIoT (Internet of Things) に用いられる、電力伝送までが実現されています。
光波では、メタサーフェスによる太陽電池の効率向上を契機に、超薄型高精細有機ELディスプレイ (OLED) が実現されており、今後のAR/VR用ディスプレイとして期待されています。光学メタサーフェス搭載で、薄型化・小型化を実現したLiDARに関するCES2024 での発表には、関わった企業すべてが参集しています。光学メタサーフェスでは、当初は金属を利用する表面プラズモニクスとの関係から、金属ナノロッドが用いられたが、金属による損失が問題となっていました。しかしながら、金属を用いるメタサーフェスよる損失の問題は、波長に応じた高屈折率誘電体 (n>2) を用いることで解消を図っています。
音波においては、メタマテリアルを用いた、自動車やエアコンの消音/遮音がすでに実現されています。障害物の超音波透過を実現する「超音波メタマテリアル」も考案されており、音波におけるメタサーフェスへの取り組みも始まっています。
均一温度環境下でも、メタマテリアルが熱輻射を吸収して、局所的に発生する熱を利用した熱電変換 (環境発電) が可能であり、この熱電変換を利用すれば密閉空間内に置かれた物体を冷却できる (非放射冷却) との学術的報告もあります。
メタマテリアル/メタサーフェスにおける、無反射をめざす学術的研究分野では、下記の取り組みがなされており、今後の発展が期待できます。
本セミナーでは「知財戦略や戦略的特許出願、さらには特許情報の読み解き方」を踏まえ「実用化をめざしたメタマテリアル/メタサーフェス」に関する取り組みの俯瞰を試みます。
教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。
開始日時 | 会場 | 開催方法 | |
---|---|---|---|
2025/10/2 | 医薬品におけるアジア各国との特許審査実務の比較 | オンライン | |
2025/10/2 | 技術者・研究者のための新規事業創出と成功の具体的方法 | オンライン | |
2025/10/7 | 新規R&Dテーマを社内で通すための数字の示し方、経営層説明・説得の仕方 | オンライン | |
2025/10/9 | 新規事業テーマ創出の仕組み作りと運営のポイント | オンライン | |
2025/10/9 | 生成AIの著作権侵害問題とトラブル対策 | オンライン | |
2025/10/9 | インフレ時代の三位一体戦略統合 / 知財戦略・技術戦略・事業戦略の相互理解と具体策 | オンライン | |
2025/10/10 | 他社の数値限定発明・パラメータ発明への対抗策 | オンライン | |
2025/10/14 | レオロジーを特許・権利化するための基礎科学、測定技術、知財戦略 | オンライン | |
2025/10/14 | 医薬品R&D担当者に必要なマーケティング・特許調査方法と開発戦略 | オンライン | |
2025/10/15 | 市場・製品・技術ロードマップの作成プロセスとその活動の全体体系 | オンライン | |
2025/10/15 | 生成AI×知財業務 実践講座 | オンライン | |
2025/10/17 | コア技術と自社の強みを活かした事業アイデアの創出ノウハウと開発テーマへの展開 | 東京都 | 会場・オンライン |
2025/10/17 | 次世代通信 (6G) に要求される高周波対応部品・部材の特性と技術動向 | オンライン | |
2025/10/20 | IPランドスケープの進め方と経営層、事業部への提案方法 | オンライン | |
2025/10/22 | 数値限定発明・パラメータ発明の特許要件と出願・権利化の留意事項 | オンライン | |
2025/10/22 | 他社の数値限定発明・パラメータ発明への対抗策 | オンライン | |
2025/10/24 | 技術を核にした新事業・新製品創出の進め方 | オンライン | |
2025/10/29 | 市場の潜在ニーズの見つけ方と製品アイデア・テーマの発想プロセス | オンライン | |
2025/11/4 | 次世代通信 (6G) に要求される高周波対応部品・部材の特性と技術動向 | オンライン | |
2025/11/11 | 技術を核にした新事業・新製品創出の進め方 | オンライン |
発行年月 | |
---|---|
2010/8/20 | 日立製作所 技術開発実態分析調査報告書 |
2010/8/20 | マッサージ機 技術開発実態分析調査報告書 |
2010/8/1 | 水処理業界18社 技術開発実態分析調査報告書 |
2010/8/1 | ミズノ、アシックス、デサント3社 技術開発実態分析調査報告書 |
2010/7/20 | 電子ブック 技術開発実態分析調査報告書 |
2010/7/20 | 三菱電機 技術開発実態分析調査報告書 |
2010/6/20 | ポット・マホービン 技術開発実態分析調査報告書 |
2010/6/5 | 半導体技術10社 技術開発実態分析調査報告書 |
2010/6/1 | 森永乳業、雪印メグミルク、明治乳業3社 技術開発実態分析調査報告書 |
2010/5/25 | ガラス業界10社 技術開発実態分析調査報告書 |
2010/5/10 | 楽器 技術開発実態分析調査報告書 |
2010/5/1 | 筆記具 技術開発実態分析調査報告書 |
2010/4/25 | 特殊鋼7社 技術開発実態分析調査報告書 |
2010/4/20 | 高血圧対応製品の研究開発動向と市場分析 |
2010/4/10 | 日本ガイシ 技術開発実態分析調査報告書 |
2010/4/1 | パナソニック 技術開発実態分析調査報告書 |
2010/3/1 | 本田技研工業 技術開発実態分析調査報告書 |
2010/2/25 | 中堅重電5社 技術開発実態分析調査報告書 |
2010/2/25 | 新日本製鐵とJFEスチール 技術開発実態分析調査報告書 |
2010/2/5 | 塗料技術 技術開発実態分析調査報告書 |