技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

人工知能 (AI) による研究開発テーマの発掘と活用法

人工知能 (AI) による研究開発テーマの発掘と活用法

オンライン 開催

開催日

  • 2021年4月26日(月) 10時00分 17時15分

プログラム

第1部. 人工知能による 商品コンセプトの自動生成とその実用化

(2021年4月26日 10:00〜11:30)

 本講演では、創造性の自動化を目指した研究の動向について紹介します。特に、新しいコンセプトをコンピューターに自動で生成させることを目的とした私達の研究について詳しく説明し、企業で活用された事例も紹介します。紹介する技術の特徴は、コンセプトについて書かれたインターネット上の文書データを機械学習が学ぶことで、コンセプトの自動生成を実現している点です。具体的には、インターネット上の文書から生成された「意味ネットワーク」の経時変化を、機械学習のモデルが学習することで、成功したコンセプトに共通の法則性を抽出し、その法則性を用いて新しいコンセプトを生成しています。実際のヒット商品に関する文書データを用いた評価実験を行うと、ヒット商品に共通する法則性が抽出できたことを示唆する結果が得られました。また実際の企業担当者による評価では、本技術で自動生成したコンセプトは、人間の専門家の出したものと比べて新規性が高いという結果も得られました。なお、この技術は特許出願中であり、アルゴリズムの詳細や評価結果の一部が論文として公表されています。

  1. 創造性やコンセプトの自動化を目指した研究の動向
  2. 講演者の研究しているコンセプト自動生成技術
    1. コンピューターで扱えるコンセプトの形式
    2. 成功したコンセプトをコンピューターが学ぶ手法
    3. 学習済みのコンピューターによるコンセプトの自動生成
  3. コンセプト自動生成技術の評価結果
    1. 過去のヒット商品を表す文書データによる評価
    2. 利用者調査による評価
  4. 実用化事例
    • 質疑応答

第2部. “アイデアを出しまくるAI”の 開発とその活用の仕方

(2021年4月26日 12:15〜13:45)

 「AIブレストスパーク」は、TIS株式会社と株式会社博報堂が共同開発した、発想支援クラウドサービス、AI技術の応用によりアイデアの素を量産し、企画/開発などアイデアだし業務の効率化をサポートします。アイデアやコンセプトのきっかけとなるキーワードを入力すると共起する関連語をインターネット上から瞬時に収集、組み合わせ、新たな切り口や視点としてユーザーに提供します。人力では時間を要するアイデアの拡散を効率化し、俯瞰情報やコトバ同士の“意外接着“により発想を増幅させ、人間の創造力を高めます。「AIブレストスパーク」に搭載されている“博報堂発想メソッド”および、具体的な活用方法をご紹介します。

  1. AIブレストスパーク開発の背景
  2. AIとワイガヤしながら共創する時代へ
    1. 「思いつかない地獄」の諸症状、あなたはいくつ当てはまる?
    2. いまこそ発想法を変えて、異次元のアイデア開発へ
  3. AIブレストスパークの哲学とその実装
    1. 博報堂発想メソッドとは?
    2. 鉄則:拡散と混沌なくして、跳躍なし
    3. 5つのメソッドと5つの機能
    4. 「拡散」と「混沌」に、なぜ、博報堂はこだわるのか?
    5. つのメソッドと機能、フル活用の55のコツ
    6. 自分では思いつかないコトバの海に飛び込む[ひらめきマップ]
    7. コトバとコトバを、意外接着する[ブレストアイデア]
    8. 白紙に採集し、島分けする、俯瞰する[ノート]
    9. こんなとき、〇〇だったらどう考える?[他人のアタマで考える]
    10. すべての刺激に「あるかも!」スタンスで反応する[連続刺激モード]
  4. 活用事例その他
    1. 活用事例
    2. 研究開発領域での活用可能性について
    3. ご利用環境、料金プラン
    • 質疑応答

第3部. 膨大な論文・特許データの分析による事業展開可能性の探索

(2021年4月26日 14:00〜15:30)

 2016年8月に、膨大な医学論文を学習した米IBMのWatsonが、特殊な白血病患者の病名を10分ほどで見抜き、患者の生命を救ったと東京大医科学研究所が発表した。同研究所の東條有伸教授は「AIが患者の救命に役立ったのは国内初ではないか」とのコメントを残している。学術文献のビッグデータ分析や機械学習を用いた分析が実社会に与えるインパクトは大きく、医療分野のみならず幅広い分野での応用が注目されている。本発表では、まず、研究開発における機械学習の応用について触れる。そして、膨大な論文・特許データの分析による「事業展開可能性の探索」と「新しいアプリケーションの探索」について紹介する。本稿で紹介する分析方法が、政策立案者や研究開発部門のマネージャー等にとって、今後取り組むべき革新的な研究開発のシーズを効果的・効率的に特定するための一助になることができれば幸いである。

  1. はじめに
  2. 情報の洪水と人工知能
  3. 人工知能と機械学習
  4. 機械学習にはどんな事例があるか
  5. 機械学習の研究開発分野への応用
  6. 機械学習にはどんな手法があるか
  7. どのように機械学習の手法を選べばよいか
  8. 一般的な機械学習プロジェクトの流れ
  9. 機械学習プロジェクトの実態
  10. 膨大な論文・特許データの分析による「事業展開可能性の探索」
  11. 膨大な論文・特許データの分析による「新しいアプリケーションの探索」
  12. まとめ
    • 質疑応答

第4部. AIにより得られた製品の 品質保証とその活用法

(2021年4月26日 15:45〜17:15)

 本講演では、人工知能 (AI) 、機械学習の研究開発業務において問題となる品質保証の問題を取り上げる。AIの品質保証では、 (1) AIの公平性、 (2) AIの説明可能性・解釈可能性、 (3) AIの透明性が問題となる。これらの話題について、概要を述べる。「AI の公平性」とは、入力データにバイアスがあり、先に述べたチャットポットのように意図に反する動作をするような例を指している。AI の「説明可能性・解釈可能性」とは、深層学習などの複雑なネットワークを用いて得られるモデルにおいて、得られた重みパラメータの生成理由が解釈不能であるという「ブラックボックス問題」を指している。「 AIの透明性」とは、AI でどのようなアルゴリズム (すなわちプログラム) が使われているか、どのようなデータを用いて訓練したのかをきちんと理解して活用するということである。

  1. はじめに
  2. AIの研究開発業務における品質保証
    1. AIの品質保証とは
    2. チャットボットのヘイトスピーチ
    3. AIの「ブラックボックス問題」
    4. 「AIの民主化」の問題点
  3. AIの公平性をめぐる問題点とその検証法
    1. AIの公平性とは
    2. 機械学習で用いられるメタモルフィック・テスティング
  4. AIの説明可能性・解釈可能性をめぐる問題点とその解決法
    1. 説明可能性・解釈可能性をめぐる問題点
    2. XAI (Explainable AI:説明可能なAI) の例
  5. AIの透明性をめぐる問題点とその解決法
    1. AIの民主化をめぐる問題点
    2. AIの品質モデルとAIの透明性
  6. おわりに
    • 質疑応答

講師

  • 須藤 明人
    静岡大学 情報学部 情報科学科
    講師
  • 長谷川 剛史
    TIS株式会社 ビジネスイノベーション事業部
    ディレクター
  • 八幡 功一
    株式会社 博報堂
    エグゼクティブ・クリエイティブ・ディレクター
  • 高野 泰朋
    東京工業大学 環境・社会理工学院
    特別研究員
  • 石井 一夫
    公立諏訪東京理科大学 工学部 情報応用工学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 66,000円 (税込)
複数名
: 55,000円 (税別) / 60,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 55,000円(税別) / 60,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 66,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 121,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 181,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2021/5/13 中国電力ネットワーク配電部の取組み 東京都 会場・オンライン
2021/5/14 Pythonによる機械学習の基礎とポイント オンライン
2021/5/17 Pythonによる異常検知 オンライン
2021/5/18 大学、公的研究機関、企業間における共同研究開発の進め方とトラブル対策 オンライン
2021/5/18 特許明細書の書き方 オンライン
2021/5/18 他社特許を分析して事業に役立つ強い特許を取得する権利化戦略 オンライン
2021/5/19 自動運転システムの安全設計&安全性評価方法 オンライン
2021/5/19 AIで新事業を創出そのための知財戦略とクレーム・明細書 オンライン
2021/5/20 統計的データ処理のための確率統計・線形代数入門 オンライン
2021/5/20 研究開発部門を対象とした特許明細書の作成法とクレームの書き方ノウハウ講座 オンライン
2021/5/20 エンジニアのための実験計画法&Excel上で構築可能な人工知能を併用する非線形実験計画法入門 オンライン
2021/5/20 特許調査・分析、自分でちゃんとできますか? オンライン
2021/5/21 Pythonで学ぶ機械学習と異常検知および余寿命推定への適用 オンライン
2021/5/21 自然言語処理の基礎と応用 オンライン
2021/5/21 画像の品質を高精度に評価する方法のノウハウ オンライン
2021/5/24 技術者が知っておくべき他社特許調査・対策と自社出願特許の強化 オンライン
2021/5/24 研究者向け特許の読み方入門 (特許請求の範囲を中心に) オンライン
2021/5/26 知財戦略としての他社特許対策 オンライン
2021/5/26 「抜け・もれ」のない効率的な特許調査・他社特許の読み方とポイント オンライン
2021/5/26 計測インフォマティクスの最新動向と運用事例 オンライン

関連する出版物

発行年月
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/10/8 P&G 技術開発実態分析調査報告書 (CD-ROM版)
2018/10/8 P&G 技術開発実態分析調査報告書
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2014/7/30 キヤノン〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版)
2014/7/30 キヤノン〔2014年版〕 技術開発実態分析調査報告書
2014/7/25 有機EL〔2014年版〕 技術開発実態分析調査報告書
2014/7/25 有機EL〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版)
2014/7/15 化粧品13社〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版)
2014/7/15 化粧品13社〔2014年版〕 技術開発実態分析調査報告書
2014/7/10 芳香剤 技術開発実態分析調査報告書(CD-ROM版)
2014/7/10 芳香剤 技術開発実態分析調査報告書
2014/6/1 パテントマップの全知識 (増刷改訂版)
2013/12/20 紙おむつ〔2014年版〕 技術開発実態分析調査報告書 (CD-ROM版)
2013/12/20 紙おむつ〔2014年版〕 技術開発実態分析調査報告書
2013/10/20 TI〔米国特許版〕 技術開発実態分析調査報告書 (CD-ROM版)
2013/10/20 TI〔米国特許版〕 技術開発実態分析調査報告書
2013/9/25 マシニングセンタ 技術開発実態分析調査報告書 (CD-ROM版)