技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習入門

逆強化学習入門

~報酬関数推定を介した強化学習~
東京都 開催 会場 開催

開催日

  • 2020年7月17日(金) 10時30分 16時30分

修得知識

  • 逆強化学習の基本的な原理
  • 代表的な逆強化学習手法の概要
  • 報酬関数推定を介した強化学習の有用性と課題

プログラム

 強化学習は、a) システムに対する要求が明確である一方、b) それを満足するシステムの挙動の設計が困難な問題に対して有効なアプローチの1つです。ここで、a) のシステムに対する要求は、学習者の意思決定に対する評価である報酬関数によって表現されます。しかし、報酬関数は学習の安定性や効率などにも影響を与えるため、その設計は煩雑になりがちです。また、そもそもシステムに対する要求を報酬関数として書き下すことが困難な問題も存在します。
 このような背景から、手動で報酬関数を設計する代わりに他者の振る舞いを観測し、その振る舞いを説明する報酬関数を推定する、逆強化学習と呼ばれるアプローチが考案されました。
 本セミナーでは、強化学習の原理と特徴を俯瞰した上で、逆強化学習の基本的な考え方を解説します。また、代表的な逆強化学習手法及び関連する研究事例についても紹介します。受講者がご自身で逆強化学習を実装し、試していただくためのサポートとなるよう、基礎的な内容に重きを置いたセミナーを目指します。

  1. はじめに
  2. 強化学習
    1. 概要
    2. 問題設定
    3. ベルマン方程式
    4. 離散系における強化学習
    5. 連続系における強化学習
  3. 逆強化学習
    1. 概要
    2. 強化学習と逆強化学習の関係
    3. 問題設定
    4. 基本的な考え方
    5. 線形モデル
    6. 非線形モデル
  4. 応用的な手法に関する研究事例の紹介
  5. まとめ

講師

  • 増山 岳人
    名城大学 理工学部 電気電子工学科
    准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/8 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/9 マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開 オンライン
2025/4/10 Vision Transformerの仕組みとBEV Perception オンライン
2025/4/11 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/15 自動運転・運転支援に向けた各種センサーを用いた周辺環境認識技術 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 Pythonによる機械学習の基礎と実践 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン