技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、AI・ロボットを活用して短時間で大量の実験データを取得する方法、研究者の技量や経験・勘に頼らない効率的な実験等、研究効率を飛躍的に高めるDXの導入方法と運用の仕方について具体的な事例を交えて詳解いたします。
~ リサーチトランスフォーメーション (RX) のすすめ ~
(2022年5月20日 10:00〜11:30)
リサーチ・トランスフォーメーション (RX) は、コロナ禍以降の研究開発活動の姿へ向けた、研究開発の変革を指す。今、社会・産業そのものだけでなく、将来への投資である産・学における研究開発の在り方も、新たな時代の新たな姿へ変貌しつつある。それは、これまでの延長線だけでは開けない地平に挑むために必要な変革と捉えられる。研究開発活動の一連のプロセスにおいて、いわばオペレーティングシステムをトランスフォームするRX。そのドライバーとして、研究開発のDXは重要な手段となるが、DX自体は目的ではない。DXだけでない、研究開発システム全体を新しい姿へと導く変革としてのRX。
本講演ではRXの要諦や課題を、内外の科学技術・イノベーション動向を交えて紹介する。
(2022年5月20日 12:15〜13:45)
この10年ほどの間で、マテリアルインフォマティクス(MI)による材料開発が急速に加速している。日本で着目を集めるきっかけとなった出来事としては、2011年に米国で開始された「マテリアルゲノム計画」があげられる。その時点で、弊社ではMI研究が進んでいない状態であり、このままでは材料開発の分野で競争に遅れるとの危機感を持った。そのような状況下で、弊社研究所でMIを立ち上げる必要があると考え、私はその導入を任された。取り組み初期の段階から、一研究所で進めては上手くいかないと悟り、ボトムアップ的に他研究所も巻き込んで進める必要があると考えた。
本セミナーでは、取り組み初期での「チーム編成や人材育成で苦労した点」や「MIを利用した具体的な応用例」に関して紹介する 。
(2022年5月20日 14:00〜15:30)
次世代蓄電池の研究開発の現場において、近年、マテリアルズ・インフォマティクス (MI) と呼ばれるデータサイエンスを用いた材料探索の高速化・効率化に関する試みが盛んである。従来の研究者の経験と勘に頼った材料探索に替わって、実験データベースや機械学習などを活用することで、新材料発見の時間やコストの削減が可能となる。
本講座では、データ駆動型の電池材料探索実施に不可欠な大量の実験データを取得するための実験自動化手法の開発状況と、機械学習を活用した探索実施例について紹介する。
(2022年5月20日 15:45〜17:15)
研究者による経験や感に基づいて行われていた従来の材料設計に対して、AI活用による材料開発スキームがなぜ必要になってきているかという背景を説明する。その際、化学や材料化学に関する専門知識を生かすだけでなく、マテリアルズインフォマティクスなどのデータ駆動型サイエンスの技術を活用することの重要性を示す。その上で、ベースとなるデータの構築と、機械学習・深層学習の手法について具体例を挙げて紹介する。
これらのデータと手法を材料開発に用いることで、実験試行錯誤削減を成し遂げることが可能となる。特に、産学連携国家プロジェクト等で具体的研成果を挙げたので、その内容を詳細に説明する。
日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/1/20 | EMCの基礎と機械学習・深層学習の応用技術 | オンライン | |
| 2026/1/22 | 生成AI/AIエージェントを活用した研究開発業務の自動化・自律化 | オンライン | |
| 2026/1/26 | 機械学習と脳科学におけるベイズ統計 | オンライン | |
| 2026/1/26 | Pythonを用いた実験計画法とその最適化 | オンライン | |
| 2026/1/26 | 外観検査 (2日間) | オンライン | |
| 2026/1/26 | AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 | オンライン | |
| 2026/1/27 | 実験・測定に必要な統計の基礎とデータ解析のポイント | オンライン | |
| 2026/1/27 | AIの選択・精度・効率・構造・コストなどの最適化原理 | オンライン | |
| 2026/1/27 | 医薬品・部外品・化粧品分野で必要な品質管理/検査に役立つ化学分析の基礎 | オンライン | |
| 2026/1/27 | 時系列データ分析 入門 : 基礎とExcelでの実行方法 | オンライン | |
| 2026/1/28 | ディジタルフィルタを理解する | オンライン | |
| 2026/1/28 | データ分析およびAIエージェントの基礎と活用に向けたポイント | オンライン | |
| 2026/1/29 | 各種分子シミュレーションを用いた高分子研究、材料解析の考え方、その選び方と使い方 | オンライン | |
| 2026/1/29 | 分子動力学法の進め方と高分子材料開発への応用 | オンライン | |
| 2026/1/30 | AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック | オンライン | |
| 2026/2/2 | AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック | オンライン | |
| 2026/2/4 | 実験の実務 : 効率的、確実に目的を達成できる実験内容の考え方 | オンライン | |
| 2026/2/4 | AI外観検査の導入プロセスと実践ノウハウ | オンライン | |
| 2026/2/5 | AI外観検査の導入プロセスと実践ノウハウ | オンライン | |
| 2026/2/6 | データ分析およびAIエージェントの基礎と活用に向けたポイント | オンライン |
| 発行年月 | |
|---|---|
| 2025/3/31 | ベイズ最適化の活用事例 |
| 2024/10/31 | 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発 |
| 2024/10/31 | 自然言語処理の導入と活用事例 |
| 2024/9/30 | 最新GMPおよび関連ICHガイドライン対応実務 |
| 2024/1/12 | 世界のマテリアルズ・インフォマティクス 最新業界レポート |
| 2023/12/27 | 実験の自動化・自律化によるR&Dの効率化と運用方法 |
| 2023/6/30 | 生産プロセスにおけるIoT、ローカル5Gの活用 |
| 2023/4/28 | ケモインフォマティクスにおけるデータ収集の最適化と解析手法 |
| 2022/12/31 | 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集 |
| 2022/4/28 | 研究開発部門へのDX導入によるR&Dの効率化、実験の短縮化 |
| 2021/10/25 | AIプロセッサー (CD-ROM版) |
| 2021/10/25 | AIプロセッサー |
| 2021/7/30 | マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例 |
| 2021/6/30 | 人工知能を用いた五感・認知機能の可視化とメカニズム解明 |
| 2021/6/28 | AI・MI・計算科学を活用した蓄電池研究開発動向 |
| 2020/12/30 | 実践Rケモ・マテリアル・データサイエンス |
| 2020/8/11 | 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート |
| 2020/8/1 | 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線 |
| 2020/7/31 | 生体情報センシングと人の状態推定への応用 |
| 2020/4/30 | 生体情報計測による感情の可視化技術 |