技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

速習講座 機械学習・ディープラーニング

速習講座 機械学習・ディープラーニング

~概要と今後の方向を知り、学び方を掴む~
東京都 開催 会場 開催

開催日

  • 2018年11月2日(金) 13時00分17時00分

プログラム

  1. 機械学習とは
    1. 学習と機械学習
    2. ディープラーニングの成果
    3. 機械学習とは
    4. 機械学習の方法
    5. 進化的計算
    6. 群知能
    7. 強化学習
    8. ニューラルネットワーク
    9. ディープラーニング
  2. 強化学習
    1. 強化学習とは
    2. Q学習による強化学習の実現
  3. 群知能
    1. 群知能とは
    2. 蟻コロニー最適化法
  4. 進化的手法による機械学習
    1. 進化的手法とは
    2. 遺伝的アルゴリズム
  5. ニューラルネットワークの基礎・構成と使い方
    1. 人工ニューラルネットワーク
    2. 人工ニューロンのモデル
    3. ニューラルネットワーク
    4. ニューラルネットワークの学習
    5. バックプロパゲーションによるニューラルネットワークの学習
    6. バックプロパゲーションの原理
    7. バックプロパゲーションのアルゴリズム
  6. ディープラーニングと畳み込みニューラルネット
    1. ディープラーニングとは
    2. ディープラーニングの基礎
    3. ディープラーニングの具体的技術
    4. 畳み込みニューラルネットワーク
    5. 画像処理と画像フィルタ
    6. 画像フィルタの実際
    7. 畳み込みニューラルネットの概念
    8. 畳み込みニューラルネットの構造
    9. 畳み込みニューラルネットワークの構成方法
    10. 畳み込みニューラルネットによる画像認識
    11. 畳み込みニューラルネットワークの応用
  7. 機械学習・ディープラーニングの現状
    1. 機械学習・ディープラーニングでできること
    2. 機械学習・ディープラーニングの課題

講師

  • 小高 知宏
    福井大学 工学部 知能システム工学科
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 44,000円 (税別) / 47,520円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)

テキストについて

テキストとして、「 機械学習と深層学習 ―C言語によるシミュレーション 」 (2,808円) を使用いたします。
テキストが必要な方は、お申し込みのテキスト希望欄から「必要」をご選択下さい。
受講料と、テキスト代(実費)を合わせて請求させていただきます。

機械学習と深層学習 ―C言語によるシミュレーション

本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/27 外観検査 (2日間) オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/3/5 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/3/9 AI外観検査の最新動向と導入、運用ポイント オンライン
2026/3/10 Pythonを用いた高分子材料の画像解析入門 オンライン