技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
このセミナーは2024年10月に開催したセミナーのオンラインセミナー:オンデマンド配信です。
オンラインセミナーは、お申し込み日より10営業日間、動画をご視聴いただけます。
お申込は、2025年4月28日まで受け付けいたします。
(収録日:2024年10月30日 ※映像時間:約4時間44分)
本セミナーでは「知財戦略や戦略的特許出願、さらには特許情報の読み解き方」を踏まえ「実用化をめざしたメタマテリアル/メタサーフェス」に関する取り組みの俯瞰を試みます。
メタマテリアルは電磁波の分野で、V. G. Veselagoが1967年に負の屈折率をもつ物質を予言したことに始まります。D. R. SmithとL. B. Pendryが、2002年にGHzの周波数域で負の屈折率をもつ3次元の実物を製作したことで、メタマテリアルの研究がスタートしました。メタサーフェスは、光の波長よりも十分小さな構造体を 2次元的に配列したもので、 2011年にHarvard大 Capassoらが初めて実証に成功した、比較的新しい技術です。そのため、3次元のものをメタマテリアル、2次元のものをメタサーフェスと称するだけでなく、メタマテリアルがメタサーフェスを包括する上位概念として扱われることもあります。
メタサーフェスで、光の伝搬方向を制御できることが示されことで、レンズ (メタレンズ) などの光学素子が実現されただけでなく、MEMS (Micro Electro Mechanical Systems) やCMOS (Complementary Metal Oxide Semiconductor) イメージセンサーを製造しているファンドリーであれば、製造可能とされています。そして、メタレンズのユニバーサルな構造設計に対しては、光学解析ツールの提供をビジネス化する動きもあります。電磁波 (光波と電波) は波動現象であり、波動の伝搬速度、周波数や波長が関係します。波長以下のサイズをもつ微細構造を多数並べることで、波長よりも大きな物体を製作すると、観測される波動現象には、微細構造から決まる空間平均的な物性が自然界にない特性をもつようにできます (例えば、負の屈折率) 。電磁波は縦波と横波をもつベクトル波であり、音波は縦波のみをもつスカラー波ですが、いずれも波動現象であるため,電磁波で考案されたメタマテリアル/メタサーフェスに関する取り組みのいくつかは音波でも可能になります。
電磁波では、5G/6G周波数帯域 (ミリ波・テラヘルツ波) において、メタサーフェスを用いた反射板/駆動型反射板や屈折板が実現されています。光学メタサーフェスを用いることで、垂直に入射された光を偏波成分毎に分離して検出できることが実証され、将来のデータセンターやBeyond 5Gにおいて求められる、光インターコネクション (高密度テラビット級光配線や光送受信器) の安価な実現への道筋が示されています。さらには、医療機器向けIoT (Internet of Things) に用いられる、電力伝送までが実現されています。
光波では、メタサーフェスによる太陽電池の効率向上を契機に、超薄型高精細有機ELディスプレイ (OLED) が実現されており、今後のAR/VR用ディスプレイとして期待されています。光学メタサーフェス搭載で、薄型化・小型化を実現したLiDARに関するCES2024 での発表には、関わった企業すべてが参集しています。光学メタサーフェスでは、当初は金属を利用する表面プラズモニクスとの関係から、金属ナノロッドが用いられたが、金属による損失が問題となっていました。しかしながら、金属を用いるメタサーフェスよる損失の問題は、波長に応じた高屈折率誘電体 (n>2) を用いることで解消を図っています。
音波においては、メタマテリアルを用いた、自動車やエアコンの消音/遮音がすでに実現されています。障害物の超音波透過を実現する「超音波メタマテリアル」も考案されており、音波におけるメタサーフェスへの取り組みも始まっています。
均一温度環境下でも、メタマテリアルが熱輻射を吸収して、局所的に発生する熱を利用した熱電変換 (環境発電) が可能であり、この熱電変換を利用すれば密閉空間内に置かれた物体を冷却できる (非放射冷却) との学術的報告もあります。
メタマテリアル/メタサーフェスにおける、無反射をめざす学術的研究分野では、下記の取り組みがなされており、今後の発展が期待できます。
本セミナーでは「知財戦略や戦略的特許出願、さらには特許情報の読み解き方」を踏まえ「実用化をめざしたメタマテリアル/メタサーフェス」に関する取り組みの俯瞰を試みます。
教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。
開始日時 | 会場 | 開催方法 | |
---|---|---|---|
2025/2/14 | アンメット医療ニーズ応答・事業価値最大化のポイント | オンライン | |
2025/2/18 | 無線通信用RF-SAW/BAWデバイスの設計と開発技術 | オンライン | |
2025/2/20 | メーカー技術者・研究者のための技術マーケティング入門 | オンライン | |
2025/2/20 | 費用対効果 (日本版HTA) 評価の基礎講座 | オンライン | |
2025/2/20 | AI時代のデータセンターが抱える熱問題の現状・課題と冷却技術による対策動向および今後の展望 | オンライン | |
2025/2/21 | デジタルを基盤としたニューモダリティー医薬品/ヘルスケアの探索・初期評価と事業性検討 | オンライン | |
2025/2/21 | バイオ医薬品 (生物製剤) の開発・審査の現状と品質審査の視点 | オンライン | |
2025/2/21 | 光導波路用ポリマーの材料設計と微細加工技術 | オンライン | |
2025/2/25 | インドの医療機器ビジネスの現状と関連法規の留意点 | オンライン | |
2025/2/26 | メーカー技術者・研究者のための技術マーケティング入門 | オンライン | |
2025/2/26 | ノウハウの秘匿化戦略と先使用権の立証、実践ポイント | オンライン | |
2025/2/26 | 光電融合・Co-package技術応用へ向けたポリマー光導波路の開発動向 | オンライン | |
2025/2/26 | 進歩性の意味、理解できていますか? | オンライン | |
2025/2/27 | 生成AIで効率化する情報収集・3C分析・企画立案の実践ノウハウ | オンライン | |
2025/2/28 | 5G/6Gに対応する先端基板技術開発動向 | オンライン | |
2025/2/28 | 自社の長期的・持続的成長のための自社保有技術の棚卸と未来志向でのコア技術の設定 | オンライン | |
2025/2/28 | 医薬品の知的財産制度をふまえた特許戦略構築と知財デュー・デリジェンス/知財価値評価のポイント | オンライン | |
2025/2/28 | 競合他社に優位に立つための特許情報解析 | オンライン | |
2025/2/28 | 知財実務者のためのAI活用セミナー:生成AIで実現する業務効率化とデータ解析 | オンライン | |
2025/2/28 | ポスト5G/6G対応材料設計のための材料誘電率の測定&評価技術 | オンライン |
発行年月 | |
---|---|
2021/10/29 | “未来予測”による研究開発テーマ創出の仕方 |
2021/8/31 | 研究開発の "見える化" によるR&Dテーマ評価、進捗管理と進め方 |
2021/3/31 | 研究開発テーマの評価と中止/撤退判断の仕方 |
2021/3/31 | 経営・事業戦略に貢献する知財価値評価と効果的な活用法 |
2021/2/26 | 高速・高周波対応部材の最新開発動向 |
2020/7/31 | メタマテリアル、メタサーフェスの設計・作製と応用技術 |
2020/6/11 | 5GおよびBeyond 5Gに向けた高速化システムおよびその構成部材 |
2019/5/31 | 医薬品モダリティの特許戦略と技術開発動向 |
2019/4/1 | 軸受の保持器 技術開発実態分析調査報告書 (CD-ROM版) |
2019/4/1 | 軸受の保持器 技術開発実態分析調査報告書 |
2019/1/29 | 高周波対応部材の開発動向と5G、ミリ波レーダーへの応用 |
2018/10/8 | P&G 技術開発実態分析調査報告書 (CD-ROM版) |
2018/10/8 | P&G 技術開発実態分析調査報告書 |
2018/10/1 | 軸受の密封 技術開発実態分析調査報告書 (CD-ROM版) |
2018/9/28 | コア技術を活用した新規事業テーマの発掘、進め方 |
2017/12/27 | 「特許の棚卸し」と権利化戦略 |
2014/7/30 | キヤノン〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版) |
2014/7/30 | キヤノン〔2014年版〕 技術開発実態分析調査報告書 |
2014/7/25 | 有機EL〔2014年版〕 技術開発実態分析調査報告書(CD-ROM版) |
2014/7/25 | 有機EL〔2014年版〕 技術開発実態分析調査報告書 |