技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習・模倣学習の基礎と応用

逆強化学習・模倣学習の基礎と応用

オンライン 開催

開催日

  • 2022年9月29日(木) 10時00分16時00分

修得知識

  • 逆強化学習の問題設定
  • マルコフ決定過程・ベルマン方程式
  • 例題を通じて逆強化学習の実装方法
  • 制御分野と機械学習の共通部分
  • 逆強化学習の事例
  • 逆強化学習の応用範囲

プログラム

  1. 逆強化学習の位置づけ・機械学習の基礎
    1. 逆強化学習と機械学習・最適制御の関係
      • 強化学習は制御と関連が強い
      • 逆強化学習と強化学習 (最適制御) と何が違う?
    2. 機械学習の基礎のおさらい
      • 生成的 / 識別的
      • 経験リスク最小化
      • 様々な損失
      • 2クラス分類 / 他クラス分類 / 系列ラベル分類
        • … 構造的なデータに対しても「識別」は定義できる ⇒ 逆強化学習ではどうやって解く?
  2. 逆強化学習の定式化・解法
    1. 強化学習の基礎:マルコフ決定過程、ベルマン方程式
      • 動的システム
      • マルコフ性
      • マルコフ決定過程 / 報酬関数
      • 価値関数 / ベルマン方程式
    2. 逆強化学習の定式化とアルゴリズム
      • 報酬期待値の最大化
      • 損失関数の設定
      • 最大エントロピー逆強化学習
      • 周辺分布の獲得前向き・後ろ向き計算
    3. 逆強化学習を適用しようとすると起きる問題は??
  3. 逆強化学習の適用例・最近の事例
    1. 海外での適用事例、下坂研究室での事例
      • (簡易版) 車線変更
      • 経路選択
      • Zone 30マルコフの加減速モデリング
    2. 連続・高次元化に向けた方向性、深層学習との融合
      • 関数近似の利用、離散化の工夫
      • 連続空間上のIRL:分配関数 (積分計算) の近似がポイント
      • この分野も深層NN、さらにはGANの導入が始まってきている

講師

  • 下坂 正倫
    東京工業大学 情報理工学院 情報工学系
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/18 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン
2025/12/19 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン
2025/12/19 未知の異常も検知する製造業向け人工知能技術MTシステムの基礎および適用事例 オンライン
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン