技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習によるデータ分析

これから始める

機械学習によるデータ分析

東京都 開催 会場 開催

開催日

  • 2018年12月10日(月) 10時30分16時30分

受講対象者

  • データ分析を始めようとしている方
  • データ分析結果を受け取る方
  • データ分析を依頼する方

修得知識

  • データ分析プロセスの基礎知識
  • データの前処理・扱い方 (整形方法・欠損値処理等)
  • 分析結果の評価指標・評価方法
  • 分析時の注意点 (やり方・手順を誤るとどのような結果となるか)

プログラム

 今や「データサイエンス」と云う言葉がバズワード化しているにも拘わらず、データサイエンティストは学会でも産業界でも大きく不足しており、その人材の育成が急務とされています。
 本セミナーはこのようなニーズに応える事を目的として企画されており、より正確には機械学習を用いたデータ分析の手法を実務的な観点から習得して頂く事を目的としています。さて、機械学習のアルゴリズム自体は書籍を参照しライブラリを利用することができても、実際にデータをどう扱って処理し、活かしていけばよいか分からない、という声がよく聞かれます。また関連の情報も不足しているように見受けられます。データの前処理や分析の正しいやり方・手順を理解していなければ、質の高い分析結果に至ることはできず、誤った判断を下してしまう危険性もあります。
 加うるに機械学習の急速な進展からか、誤った方法による分析結果が提出されることも多く、受け取る側の方でも正しい評価指標によりそれを判断することが求められます。
 本セミナーでは、具体的にデータ分析の正しいやり方・手順を学び、自分自身でデータ分析を行えるようになる事、または他者のデータ分析結果を評価できるようになることを目指します。

  1. データの前処理・扱い方
    1. データ分析のためのデータ形式
    2. 特徴量 (説明変数) の分類
    3. カテゴリ変数の扱い方
    4. 欠損値の扱い方
    5. データの正しい可視化方法
    6. データ収集・整形時の注意点
  2. 機械学習の基本と利用時の留意点
    1. 機械学習とは
    2. 機械学習によるデータ分析でできること
    3. 代表的なアルゴリズム
    4. データ特性に応じた手法の選択
    5. ディープラーニングとは
    6. ディープラーニングの使いどころ
  3. 分析結果の評価法
    1. 回帰モデルの評価基準
    2. 分類 (識別) モデルの評価基準
    3. 精度以外の評価基準の重要性
    4. 適合率・再現率・F値
    5. ROC曲線・AUC
  4. 機械学習によるデータ分析のすすめ方
    1. パラメータ調整の必要性とその方法
    2. 過学習とその対策 (交差検証法など)
    3. バイアスとバリアンスについて
    4. 学習曲線による現状の把握
  5. ビジネスへの適用について
    1. データマイニングプロセス「CRISP – DM」
    2. 事例紹介
      • 分析結果を現場にどう受け入れてもらうか
      • 「機械学習」の前にやるべきことはないか
      • 長期運用時の課題
      • その分析は解くべき課題を解決するものか
    3. ディスカッション

講師

  • 鴨志田 亮太
    株式会社 日立製作所 研究開発グループ 知能情報研究部
    主任研究員

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン