技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習におけるパターン認識手法

機械学習におけるパターン認識手法

~SVMの理論と応用~
東京都 開催 会場 開催

開催日

  • 2020年1月30日(木) 10時30分16時30分

修得知識

  • 機械学習の基本となる教師あり学習の考え方
  • 確率的な考え方 (ベイズ推定) の基本
  • LIBSVMを例としたサポートベクターマシンの使用法
  • 未学習データに対する性能 (汎化性、本当の性能と言ってよい) 向上のためのポイント

プログラム

 深層学習に代表される人工知能技術が注目されているが、その基本となっているのはデータの属性に基づく分類手法であることには変わりはない。
 本講座では、まず、データ分類の基礎となるデータ間の類似性についての考え方を紹介し、確率的な誤り最小化、教師あり学習など、機械学習の基本となる手法を概観する。
 最後に、教師あり学習手法の例としてサポートベクターマシンを取り上げ、その代表的なライブラリであるLIBSVMの使用法を紹介するとともに、実際の応用例も紹介する。

  1. パターン認識技術の概要
  2. 距離と類似性
    1. 特徴料
    2. 距離尺度
    3. 類似性
    4. データの正規化
  3. 最近傍法とベイズ推定
    1. 最近傍法
    2. 確率的な考え方とベイズ推定
      1. 確率分泌
      2. 事前確率、条件付確率、事後確率
      3. 期待損失と最尤推定
  4. 線形識別手法
    1. ベイズ推定と線形識別手法
    2. 損失関数
    3. 最適識別面とサポートベクターマシン (SVM)
    4. ソフトマージンSVMと汎化性
  5. 非線形識別手法
    1. 非線形識別手法
    2. カーネル法
    3. カーネルSVM
    4. カーネルSVMの汎化性
  6. LIBSVM
    1. LIBSVMの概要
    2. LIBSVMの使用例
  7. 汎化性向上手法
    1. 特徴選択
    2. サンプル最適化
  8. まとめ、応用例など

講師

  • 西田 健次
    東京工業大学 工学院 システム制御系 システム制御コース
    特任准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/3 ROS/ROS2環境での三次元点群処理 オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン