技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習を用いた異常判別・検知手法

機械学習を用いた異常判別・検知手法

大阪府 開催 会場 開催

概要

本セミナーでは、機械学習を用いて異常状態を検出するための、種々の判別分析手法や異常検知手法を解説いたします。

開催日

  • 2019年6月3日(月) 10時30分16時30分

受講対象者

  • 異常値を含むデータからの検出方法にお困りの方
  • データサイエンスに関心がある方

修得知識

  • 各種分析手法の特徴、目的、長所・短所
  • 分析ソフトウェアに実装された分析手法の使い分け

プログラム

 近年、多くの産業・ビジネスの場面において、特定の対象や集団を認識することや異常状態を検出することが重要になっています。例えば工業製品の良品・不良品の判定は人力では作業量に限界が生じるためコンピュータによる自動化が求められています。このような問題に対し有効とされる機械学習手法が、種々の判別分析手法や異常検知手法です。
 そこで本セミナーでは代表的な判別分析手法である線形判別分析や非線形な判別ルールに対応できる2次判別分析、さらには複雑なデータの判別を可能にするサポートベクターマシンについて講義します。また、異常検知手法についてはデータの特性 (正規分布、周波数特性、相関) と閾値による異常判別からはじまり、マハラノビスの距離、LOF、one – class SVM、change finderといった分析手法について、その長短所や選択方法も含めて解説します。

  1. 判別と異常検知
    1. 教師あり学習、教師なし学習とは?
    2. 手法の複雑さと過学習
    3. 複雑さの選定
      1. 交差検証法
    4. 判別機の性能評価
      1. ROC曲線
  2. 異常判別:教師あり学習
    1. 線形判別
    2. 2次判別
    3. Support Vector Machine (SVM)
      1. ハードマージンとソフトマージン
      2. カーネルトリック
  3. 異常検知:教師なし学習
    1. 正規分布を用いた異常検知:単変量の場合
    2. 正規分布を用いた異常検知:多変量の場合
      1. マハラノビスの距離
      2. ホテリングのT2法
    3. Local Outlier Factor
    4. One Class SVM
    5. 時系列モデルにおける異常検知
      1. 変化点検知
      2. Change Finder
  4. まとめ
    • 質疑応答

会場

大阪産業創造館

5F 研修室D

大阪府 大阪市 中央区本町1丁目4-5
大阪産業創造館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,278円 (税別) / 49,980円 (税込)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。
複数名で同時に申込いただいた場合、1名様につき 23,139円(税別) / 24,990円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 43,750円(税別) / 47,250円(税込)
    • 2名様でお申し込みの場合 : 2名で 46,278円(税別) / 49,980円(税込)
    • 3名様でお申し込みの場合 : 3名で 69,417円(税別) / 74,970円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 46,278円(税別) / 49,980円(税込)
    • 2名様でお申し込みの場合 : 2名で 92,556円(税別) / 99,960円(税込)
    • 3名様でお申し込みの場合 : 3名で 138,833円(税別) / 149,940円(税込)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン