技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開

マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開

~小規模データを活かしたMI研究開発を効率化させるために~
オンライン 開催

アーカイブ配信で受講をご希望の場合、視聴期間は2024年3月29日〜4月11日を予定しております。
アーカイブ配信のお申し込みは2024年3月29日まで承ります。

概要

本セミナーでは、扱う材料系が多様、データが集まりにくい、データの規模が小さい等、課題に直面した際、マテリアルズインフォマティクスを研究開発に適用する方法、モデル構築について取り上げ、小規模データへの機械学習の効果的活用によるマテリアルズインフォマティクスの研究事例について解説いたします。

開催日

  • 2024年3月15日(金) 13時00分 16時30分

修得知識

  • 小規模データへのマテリアルズインフォマティクスへの適用方法
  • マテリアルズインフォマティクス活用による物質探索・プロセス最適化や性能向上の予測モデル構築
  • 研究者/技術者の熟練の知恵と機械学習の融合方法

プログラム

 「マテリアルズインフォマティクス (MI) 」は、材料に関する研究開発を効率的に進めるための新しい手法として注目を集めている。しかし、実際にMIをどのように自社・グループの研究開発に取り入れられるか、その糸口がつかめないことも少なくない。特に実験を主体とする研究では、扱う材料系が多様なことや、データの規模が小さいなどの問題点がある。
 本セミナーでは、まず、MIの最近の動向について概説する。続いて、我々のグループ内で開発してきた、小規模な実験や文献データを活用し機械学習と研究者の経験や勘を併用する実験主導MIを、具体的な事例をもとに紹介する。具体的には、ナノシート材料の合成プロセスの制御やリチウムイオン二次電池の有機活物質の探索をもとにご紹介する。これにより、現場やラボレベルでの小規模データを活かしたMIにより、研究開発を効率化させることを目指す。

  1. マテリアルズインフォマティクス (MI) の最新動向
    1. 一般的なMIへの期待
    2. MIでできることとできないこと
    3. MIの歴史と最近の動向
      1. オートメーションとの融合
      2. 機械学習の深化
    4. MIに関する最近の課題
    5. 小規模データに適用可能なMI
  2. MIを活用したプロセス最適化事例:ナノシート材料合成の制御
    1. MIを導入した系の紹介
      1. 2次元材料
      2. なぜMIが必要なのか
    2. データセットの準備
      1. ハイスループットな目的変数の設定
      2. 説明変数の設定
      3. 研究者の関与
    3. 機械学習と考察の融合による記述子抽出
      1. スパースモデリング
      2. 全状態探索
      3. 研究者の関与
    4. 予測モデル構築
    5. 予測モデルを活用した最少実験数での実験例
    6. 他の機械学習手法に対する優位性検証
    7. 適用範囲の拡張に関する検討と予測モデル改良
    8. サイズ制御への応用
    9. サイズ分布制御への応用
  3. MIを活用した物質探索事例:新規リチウムイオン二次電池有機電極活物質の性能予測と探索
    1. MIを導入した系の紹介
      1. リチウムイオン二次電池有機正極・負極活物質
      2. なぜMIが必要なのか
    2. データセットの準備
      1. 自前実験データを扱う場合
      2. 文献データをを扱う場合
    3. 機械学習と考察の融合による記述子抽出
    4. 予測モデル構築
    5. 予測モデルを活用した最少実験数での実験例
    6. 先行研究との比較
    7. 他の機械学習手法に対する優位性検証
  4. 小規模・実験データへのMIの適用
    1. ツールとしてのMIを活用する時代へ
    2. 明日からできるデータセットの準備
    3. 明日からできる機械学習と経験・勘・考察の融合
  5. おわりに
    • 質疑応答

講師

  • 緒明 佑哉
    慶應義塾大学 理工学部 応用化学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 32,400円 (税別) / 35,640円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 32,400円(税別) / 35,640円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信対応セミナー / アーカイブ配信対応セミナー

ライブ配信またはアーカイブ配信セミナーのいずれかをご選択いただけます。

ライブ配信セミナーをご希望の場合

  • 「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

アーカイブ配信セミナーをご希望の場合

  • 「ビデオグ」を使ったアーカイブ配信セミナーとなります。
  • 当日のセミナーを、後日にお手元のPCなどからご視聴ができます。
  • お申し込み前に、 視聴環境 をご確認いただき、 視聴テスト にて動作確認をお願いいたします。
  • 別途、ID,パスワードをメールにてご連絡申し上げます。
  • 視聴期間は2024年3月29日〜4月11日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/2 カルマンフィルタの実践 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/6 AI/機械学習と従来型実験データの実用的な組み合わせ方法 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/11 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/13 マテリアルズ・インフォマティクスの基礎と応用展開および研究事例 オンライン
2024/12/16 AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 2日間セミナー オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン