技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

データサイエンス入門講座

製造業向け

データサイエンス入門講座

~機械学習によるデータ分析の正しい手順・進め方と結果の見方~
東京都 開催 会場 開催

概要

本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

開催日

  • 2018年12月14日(金) 10時00分16時30分

修得知識

  • データ分析プロセスの基礎知識
  • データの収集方法、前処理・扱い方
  • 分析結果の評価指標・評価方法

プログラム

 機械学習・ディープラーニング・人工知能 (AI) 技術が注目され、データ分析を実務に活用したいと考える方が急増しています。オープンソースの機械学習ツールが充実してきたことで、高度なアルゴリズムを利用した分析を容易に行うことができるようになりました。
 しかし、正しい分析の手順・正しい分析結果の評価方法が分からなければ、ツールを正しく使いこなすことはできません。分析の手順・結果の見方が間違っていると、質の高い分析結果を得ることができないばかりでなく、誤った分析結果に基づき誤った判断を下してしまう恐れもあります。
 本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

  1. データの前処理・扱い方
    1. 分析に適したデータ形式、適していないデータ形式
    2. 特徴量 (説明変数) の分類
    3. カテゴリ変数の扱い方
    4. 欠損値の扱い方
    5. データの正しい可視化方法
    6. データ収集時・前処理時の注意点
  2. 機械学習の基本と利用時の注意点
    1. 機械学習とは
    2. 代表的なアルゴリズムとその分類
    3. 機械学習アルゴリズム利用時の注意点
    4. ディープラーニングとその使いどころ
  3. 分析結果の評価法
    1. 回帰モデルの評価基準
    2. 分類 (識別) モデルの評価基準
    3. 精度以外の評価基準とその重要性
  4. 機械学習によるデータ分析のすすめ方
    1. パラメータ調整の必要性とその方法
    2. 過学習についてとその対策
    3. 性能向上のために何をするべきか
  5. ビジネスへの適用について
    1. 分析結果を現場にどう受け入れてもらうか
    2. 機械学習の前にやるべきことはないか
    3. 実運用時の課題
    4. その分析は解くべき課題を解決するものか
    5. 分析結果の公平性
    6. 真実は常に一つ?
    • 質疑応答

講師

  • 鴨志田 亮太
    株式会社 日立製作所 研究開発グループ 知能情報研究部
    主任研究員

会場

品川区立総合区民会館 きゅりあん

4F 第1グループ活動室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 22,500円 (税別) / 24,300円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,300円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 42,750円(税別) / 46,170円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 48,600円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 72,900円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/17 実験計画法 入門講座 オンライン
2026/2/18 HPLCの基礎と現場で役立つ実務ノウハウ / トラブル対策 オンライン
2026/2/18 分析法バリデーション超入門講座 オンライン
2026/2/19 ベイズ統計モデリングの基本的な考え方とモデルの立て方、結果の解釈 オンライン
2026/2/19 体外診断用医薬品の性能評価に必須の統計解析基礎講座 オンライン
2026/2/19 分析法バリデーション超入門講座 オンライン
2026/2/20 化学分析・機器分析の効果的な進め方と業務への活かし方 オンライン
2026/2/20 ICH新ガイドラインに対応する分析法開発と分析法バリデーションの基礎と実践 東京都 会場・オンライン
2026/2/20 近赤外分光法の基礎と材料等の分析への応用 オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 商品開発のための感性・官能評価用アンケート設計と物性値への落とし込み オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/24 近赤外分光法の基礎と材料等の分析への応用 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 HPLC (高速液体クロマトグラフィー) 分析の進め方とノウハウ及びトラブル対応 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 HPLC (高速液体クロマトグラフィー) 分析の進め方とノウハウ及びトラブル対応 オンライン
2026/2/26 実務に役立つ統計解析の基本と活用 オンライン