技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習の基礎と応用

機械学習の基礎と応用

東京都 開催 会場 開催

概要

本セミナーは、機械学習の基礎から解説し、今後の動向について詳解いたします。

開催日

  • 2015年9月29日(火) 13時00分17時00分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 機械学習の基礎と応用

プログラム

  1. 学習モデル
    1. 線形モデル
    2. カーネルモデル
    3. 非線形モデル
  2. 最小二乗回帰
    1. 学習規準
    2. 解の計算法
  3. 正則化回帰
    1. L2制約付き最小二乗回帰
    2. 解の計算法
    3. モデル選択
  4. スパース回帰
    1. L1制約付き最小二乗回帰
    2. 解の計算法
    3. 様々な拡張
  5. ロバスト回帰
    1. L1損失最小化
    2. フーバー損失最小化
    3. 解の計算法
  6. 最小二乗分類
    1. 最小二乗回帰による分類
    2. 多クラスの分類
    3. 0/1損失とマージン
  7. サポートベクトル分類
    1. ヒンジ損失最小化
    2. マージン最大化
    3. カーネルトリック

講師

  • 杉山 将
    東京大学 大学院新領域創成科学研究科 複雑理工学専攻
    教授

会場

ちよだプラットフォームスクウェア
東京都 千代田区 神田錦町3-21
ちよだプラットフォームスクウェアの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 43,000円 (税別) / 46,440円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 56,000円(税別) / 60,480円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 AI・ロボットを活用した自律型材料研究開発 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/3/5 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/3/10 Pythonを用いた高分子材料の画像解析入門 オンライン
2026/3/10 スペクトル・イメージデータへの機械学習の応用 オンライン
2026/3/13 開発・生産現場で諸課題を解決に導くデータ駆動型手法 / ディープニューラルネットワークモデル / MTシステムの基礎と応用 オンライン
2026/3/16 小規模実験の自動化による研究開発の効率化と再現性向上 オンライン
2026/3/19 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/3/30 フィジカルAI時代における知能化センシングの基礎と応用 オンライン